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r SUMMART 

This report prescribes a method for calculating pressure 

coefficients and local Mach numbers for lifting and non- 

lifting pointed bodies of revolution and for several special 

cases of blunt-nosed bodies. The method, which utilizes hy- 

brid tandem solutions Involving Generalized Newtonian and 

Shock-Expansion theories, provides accurate results for a 

variety of nose shapes and fineness ratios over a range of 

supersonic/hypersonic Mach numbers.  The numerical simplicity 

of the method, which makes it readily applicable for quick 

hand-calculational procedures, was the prime factor in its 

selection and publication; the few existing methods which 

yield accurate results over a comparable range of application, 

such as the method of characteristics, are not used extensively 

because of the lengthy numerical calculations involved. 

The present method has been conpared with exact solutions, 

various pertinent theories, and experimental data where avail- 

able and the overall agreement of the results is quite favorable. 

The investigation for lifting bodies Indicates the present method 

is applicable for bodies of revolution at angles of attack up 

to about ten degrees. 

This report presents numerical examples showing stepwise 

calculational procedures for obtaining pressure coefficient and 

local Mach number distributions along the meridians of a body 

of revolution at angle of attack.  In order to make the report 

immediately useful to the engineer desiring such information, 

all of the necessary tables and look-up parameters are in- 

cluded in the appendices. 

T 
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I.     INTRODUCTION 

There are a variety of Methods available for the calculation of pressure dis- 
tributions over lifting and non-lifting bodies of revolution in the supersonic- 
hypersonic speed regime.    The usefulness and range of applicability of these 
methods have been widely discussed in available literature and are briefly sum- 
marized herein. 

In general it can be said that the methods having the most extensive range 
of applicability involve lengthy calculational procedures.     Impact theory pro- 
vides a qui.K and easy-to-apply method for calculating surface pressures in the 
supersonic-hypersonic regime 11 the surface is normal or sufficiently oblique to 
the flow.    The generalized shock-expansion method for steady two dimensional flows 
is also quick and easy to apply.     Its useful  range of application  is for Mach 
numbers greater than 2.0 and for values of the  hypersonic similarity parameter, 
M d//,,  greater than about 1.2. 

The method presented herein is a hybrid combination of modified  impact and 
shock-expansion theories which permits the facile and rapid hand calculation of 
the pressure and local Mach number distributions along any meridian on  the sur- 
face of a  lifting or non-lifting pointed body of revolution and many of the blunt 
nosed shapes.    This method,  which has a wide  range of application,   is  intended 
for use in handbook fashion by engineers needing such information for studies 
concerned with aerodynamic heating,  structural  loads,  drag,  etc. 

Wind tunnel test data in the Mach number range 2.0 to 4.0 are presented 
and are compared with the theory.    These data show the pressure distributions 
on a secant ogive nose,  a triple-cone ogive combination,  a von Karman nose shape, 
and on hemispheres.     These nose sections are attached to cylindrical  afterbodies. 

B»~ wr 



II.  SYMBOLS AND NOMENCLATURE 

a sound speed 

c limiting speed due to expansion into a vacuum 

C pressure coefficient 

c specific heat at constant pressure 
P 

c specific heat at constant volume 

d diameter 

ON Generalized Newtonian 

K hypersonic similarity parameter, M d/t 

I nose length 

M Mach number 

M critical Mach number 

N nose caliber 

p static pressure 

p total pressure 

q dynamic pressure 

R generating radius for ogival shapes 

R> universal gas constant 

r nose radius 

r radius of focal point 

S^ entropy 

Sn/ft parameter, entropy/universal gas constant 

SEM shock-expansion method 

s segment length 

V velocity 

x,y body-fixed rectangular coordinate system 

x,r,i   >       body-fixed cylindrical coordinate; system 

y vertical distance from the tangent ogive generating point 
to the centerline of the ogive 

• _ •      »'■ - wi  ,»-»■- 
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SUBSCRIPTS 

angle of attack; angle between free stream velocity and 
body centerline 

ratio of specific heats 

increment 

angle between the free stream velocity and the tangent to the 
body surface 

angle between the body surface and the longitudinal axis of 
the body 

Prandtl-Meyer flow deflection angle 

radian measure 

density 

cos"1 (1 - 2x/0 by definition 

radial meridian along body surface 

infinity 

o free stream conditions 

i flow quantities for the zero angle of attack condition 

a flow quantities related to the effect of angle of attack 

b base 

c cone 

en conditions on the equivalent tangent cone for a specific- 
segment 

m matching point 

max maximum 

N conditions at nose vertex 

n specific segment of equivalent tangent body 

s.o. secant ogive 

stag. stagnation 

t total 

' primed value: conditions at the most forward point of a 
segment of the equivalent tangent body (s - 0) 



Nomenclature used In Appendix 2 corresponding to References 26, 27, and 

28. 

t 

u/c, äVc", pB/p„,  pVp, w "w 

P_/P. P /P, DVD, P /D O      8      O      s 

Tl/p,  ?/0 

Po/P' P,' 

Aj , Bj , Si 

Aa > As , Bs , En , Sa , Sa 

parameters given in Reference 26 

parameters given in Reference 27 

parameters given in Reference 28 

coefficients related to first order 
effects of angle of attack 

coefficients related to second order 
effects of angle of attack 

, Subscripts 

i free stream conditions 

8        body surface 

w        conditions immediately behind shock wave 

—        barred quantities; conditions for zero angle 
of attack 

The remaining nomenclature used in Appendix 2 are compatible with values 

previously defined. 

0 

■• 
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III.     ANALYSIS AND RESULTS 

A. FLOW REGIME 

The flow regime considered herein covers the Mach number range from 

1.5 to approximately 8,  In general, the Mach number range most seriously con- 

sidered was from M - 2 to 6; thus only a small portion of the hypersonic flow 

regime (M > 5) has been Investigated.  The hypersonic regime, however, Is basi- 

cally an extension of the supersonic regime and If the fluid retains the prop- 

erties of an Ideal gas and the ratio of specific heats (c /c ) remains constant, 

the theories developed for the supersonic continuum should be valid in the 

hypersonic regime.  For extremely high Mach numbers, of course, the properties 

of the gas may change radically and consequently the theory which was valid at 

the lower Mach numbers must be modified accordingly. 

B. METHODS OF CALCULATING PRESSURE DISTRIBUTIONS 

1. Generalized Newtonian Theory 

The Newtonian Impact theory provides the engineer with a simple, 

rapid, and easy-to-apply method for determining the local pressure and Mach 

number distributions over a wide variety of nose shapes.  The flow concept as 

formulated by Newton assumes that the shock wave lies on the body surface and 

that the component of momentum normal to the body surface is transferred to the 

body while the tangential component remains unchanged; a condition which is 

reached in the limit as M approaches infinity and y  approaches 1.  This concept 

provides a force or force coefficient (C ) which is dependent only on the local 
P 

slope of the surface, i.e., 

C - 2 sin"© 
P 

The above expression for C reduces to that of the hypersonic small disturbance 

theory. 

' 

C    -   (y +  1)   0a   - 2 0" 

where the assumption of very slender bodies at high Mach numbers yields: 

x —» 1 as M.  » » 

and sin 0 - Ö for small angles. 

The Newtonian concept of flow as stated above neglects the effects 

of centrifugal forces which arise due to body curvature.  When the body curvature 
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is small In the free stream direction, the centrifugal forces in the thin layef 

of air between the shock wave and body surface should not affect the impact 

pressures appreciably. When the body curvature is large, however, the impact 

pressures might be significantly altered by the centrifugal forces which tend 

to relieve the impact pressures.  Various authors have attempted to modify the 

simple impact theory expression to account for centrifugal forces and have don* 

so with little or moderate success.  Busemann1 presents the problem in some d^' 

tail with encouraging results, but the equation for determining the local pres' 

sure coefficient becomes somewhat more complicated than that given by the 

original simple impact theory. 

Since the Newtonian theory offers a convenient, easy-to-apply metH0<l 

of determining pressure distributions, further attempts were made to improve upori 

the original C equation; these efforts proved to <e acceptable only when used 

with values of the hypersonic similarity parameter (K) greater than two.  To 

this extent. Lees' suggested the modified form 

C - C    sin2© 
'   pmax 

for use with blunt bodies where C    is derived from the normal shock relation^« 
^max 

By generalizing Lees' modified form. Love indicated the above equation could be 

made to include pointed-nosed bodies when used in the form: 

c - c sinae 

p
   PN sin'öj. 

where N refers to conditions at the nose vertex.  For 0„ - 90°, of course, Love's 

generalization reverts to Lees' modified form but for 9„ values less than 90° 

an expression is obtained which exhibits advantages over the use of simple impact 

theory (C - 2 sin8©).  To illustrate graphically. Love's Generalized Newtonian 

theory has been compared with the Newtonian theory and exact (method of charact^1^ 

istics) solutions for several tangent ogives in Figure 1.  The exact solutions 

were obtained from Rossow4 and include the effects due to rotation.  As shown i() 

Figure 1, the Generalized Newtonian theory offers excellent agreement with the 

exact solutions up to approximately an x/' value equal to 0.6; of equal interest 

is the theory's apparent independence of K, the hypersonic similarity parameter» 

In contrast, the Newtonian theory is markedly affected by K as indicated by the 

shaded portion of the figure wherein K varies from 0.5 to 4; from this, the 

Newtonian theory would appear to approach the exact solutions only for K>^ l. 

Reference numbers will always appear as a superscript numeral to the right of 
the subject and the footnote symbol (#) will always appear as a super- 
script to the left of the subject. 

T~' 
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Fig. 1  COMPARISON OF NEWTONIAN AND GENERALIZED-NEWTONIAN THEORY 

WITH EXACT SOLUTIONS FOR OGIVES 

These results indicate the Generalized Newtonian theory would be highly suitable 

for use in calculating pressure distributions on ogival shapes if one further 

improvement could be made, i.e., refinement of the theory to better predict the 

pressure (especially for the lower K values) over the after 40 percent of the 

nose length (an important region for drag consideration).  In the interests 

of rapid calculational use, however, the relative simplicity of the theory should 

be maintained, and on this basis, further improvement of this type appears re- 

mote. 

2.  Shock-Expansion Method 

The shock-expansion method* is an extremely simple method for 

determining the flow fields about bodies in supersonic flow, but the range of 

Mach numbers and fineness ratios which can be treated by this method are limited. 

To apply the method, the flow conditions at the nose vertex c  ihe body are ob- 

tained from conical flow solutions (charts or tables) and for flow downstream of 

the nose vertex, the Prandtl-Meyer flow equations or tables are used. 
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Comparing solutions obtained by the shock-expansion method with 

exact solutions indicates that accurate pressure distributions over ogival nose 

shapes can be predicted by the shock-expansion method provided the hypersonic 

similat·ity parameter, K, is grpater than approximately 1.2 (comparisons of this 

method with other methods will be discussed further in Section D). 

:~. Method of Characteristics 

The method of characteristics4 provides accurate solutions to 

the complete differential equations of flow by the usc of numerical and graphical 

integration. The accuracy of the method is dependent upon the fineness of the 

''mesh'' employed and since the solution by hand calculation requires much tedious 

work, the time required per solution becomes prohibitive for most generalized 

design studies. 

The method of characteristics has been applied to many basic 

types of flow fields including many of those associated with the configurations 

contained herein. A~ a result, this method has been used as a basis for com

parison when either Pxperimental data or pertinent theoretical solutions are 

11navailable. The validity of using pressure distributions from characteristic 

solutions as standards has been well established by its correlation with avail

able experimental data. 

4. Tangent-Cone Method· 

The tangent-cone method 6 estimates pressures on curved bodies by 

using the flow solutions for cones which have the same slopes as those of the 

body ~;urface at the points in question. Two applications of this method are 

available whet·ein the relative accuracy of either application depends on the 

Mach number and fineness ratio of the nose. One application of the tangent-cone 

method is to merely use the pressure coefficient for cones whose semi-vertex 

angles correspond to those of the body surface. This assumes a different total

head pressure for each segment and, in addition, cannot predict negative pres

sures. This application is referred to as the tanient-cone method with local 

total-h~ad ratio. 

The second application of the tangent-cone method uses the nose 

vertex total-head ratio across the bow shock wave of the body in the calculation 

of the surface pressures where the local Mach numbers correspond to those for 

cones tangent to the body surface. This application is referred to as the 

tangent-cone method with vertex total-head ratio. 

The tangent-cone method with local total-head ratio has been used 

briefly herein for comparison purposes and this particular application was 

selected since it offers better agreement with exact solutions. 



5. Other Methods 

There are various other methods or theories available for calcula- 

ting pressure distributions such as Linearized theory7, First Order theory", 

Second Order theory', Slender Body theory'-0 ' ^ , etc., each of which, in general, 

is applicable for a limited range of Mach numbers and nose fineness ratios. 

These methods will not be discussed since for the most part, they represent 

solutions which are not readily adapted to quick hand calculational procedures. 

6. Present Method 

Various authors in dealing with high supersonic or hypersonic 

flow over hemispherical noses have successfully used a combination impact-shock 

expansion theory to predict pressure distributions.  This blunt body method is 

discussed in Section E,  The present method extends this hybrid type of approach 

to "pointed bodies" in that Generalized Newtonian theory is used to obtain the 

pressure distribution on the forward portion of the nose and the shock-expansion 

method is used to obtain the pressure distribution on the after section of the 

nose.  The pressure distribution on the cylindrical afterbody is obtained by 

means of an exponential decay law derived by Fenter1* from a second order shock- 

expansion approximation.  In the present analysis, a method has been developed 

for the tandem blending of these solutions to provide a rapid and accurate hand 

calculational procedure for obtaining the pressure and local Mach number dis- 

tributions over a variety of nose curvatures.  This method will be developed in 

a stepwise procedure in Part 1 of Section D which describes its application to 

tangent ogives. 

C. METHOD OF CORRELATING PRESSURE DISTRIBUTIONS 

The pressure distributions calculated by the "Present Method" for 

pointed bodies of revolution are correlated on the basis of the Hypersonic 

Similarity Parameter, K, which represents the ratio of free stream Mach number 

to nose fineness ratio.  The hypersonic similarity rule states that for related, 

pointed, axially symmetric bodies of revolution, the pressure distributions (in 

terms of (p - P0)/p or the normalizing parameter C /C ) depend only on the 
N 

similarity parameter K.  Thus, if the pressure distribution for a given body is 

known, the pressure distributions for geometrically similar bodies are identical 

provided the two bodies have the same value of the similarity parameter, K. 

f 

' 

r   
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The range  of application of   this  rule for ogives*  is  shown  in Figure  2 and as  noted, 

the rule  is normally  not valid for Mach  numbers or fineness ratios less than 

approximately 2.    The present inethod illustrates this   limit may be relaxed  slightly 

to  include a nose fineness   ratio of  1.5  for K - 2. 

The hypersonic similarity   mle  has been successfully applied  to sever- 

al  special  cases  included herein which  theoretically  have blunt  noses   (infinite 

slope at   the nose vertex)   but   for most practical purposes are considered pointed 

bodies.     Blunt-nosed  bodies,   of course,   violate  the basic  assumptions made  In 

the development  of the rule,   i.e.,   slender bodies and hypersonic  flow.     In 

addition,   application of the rule  requires that  for  similarity  in pressure or 

drag,   these parameters must  be a  function of K alone  at  any point  along the 

body surface.     The pressure  at  the  nose   tip of a blunJ   body is the stagnation 

pressure which  is solely a   function of  Mo  instead of K.     Thus for truly blunt 

bodies,   like the  hemisphere,   values of C    have  not been correlated on  the basis 

of  the hypersonic similarity parameter. 

Fig.   2     RANGE OF APPLICABILITY OF SIMILARITY LAW  TOR OGIVES 

I 
'«■.•, 

' 
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D.      PRESSURE DISTRIBUTIONS  FOR NON-LIFTING  "POINTED  BODIES"  OF 
REVOLUTION -   SHOCK  ATTACHED 

1.     Tangent  Ogives 

The tangent ogive nose shape  is  used quite extensively  in  the  de- 
sign of high speed aircraft  and guided missiles.    Tangent  ogiv s  have   the ad- 
van\:;.;e of a  larger nose vertex angle and higher volume than that of an  inscribed 
cone  having the  same   l.-ngth-to-diameter  ratio,   but  the disadvantage of  slightly 

increased  drag.     This  disadvantage   is usually overshadowed,   however,  particularly 
with  reference  to those  fixed  length guided missiles which  normally use  the  nose 
to  house  a  radar dish or scanner as far  forward  on the missile as possible. 

The analysis required for  the development of   the  "Present  Method" 
was   initially formulated for   the  tangent  ogive  nose  shapes  and before  proceeding 
with  the method description,   a brief discussion of the geometric  characteristics 
of  the tangent  ogive  is presented. 

The tangent ogive is  a pointed  (for R "> r. )  convex  surface of 
revolution generated by rotation of the  radius  vector R to produce a circular 
arc  with  the tangent  at  the maximum radius  (r   )   being parallel  to  the  axis of 
symmetry of the body of  revolution. 

* 

The following relations are used to define the geometric character- 

istics of the tangent ogives: 

a.  Body Surface curvature angle, 0 

sin e - -~ir-^ '    e " sl 

at  the nose  vertex - eN ■ sin"" (-rr) 
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b. Caliber, N 

N - R/d 

7n  terms of fineness ratio, t/d 

c. Relation for fraction of axial distance along nose 

centerline, x/' 

/Ra - (y + r)3 
x// - ! . _ r 

Once an 'Vd value has been selected for the tangent ogive, the 

above geometric relations can quickly provide the caliber, if desired, and the 

variations in body surface angle, 0. 

This section considers only pointed bodies of revolution with 

shork attached.  The tangent ogive may or may not have shock detachment depend- 

ing on the Mach number and nose vertex angle of the ogive.  For this reason, a 

plot of free stream Mach number versus ogive semi-vertex angle, 0„, has been 

presented in Figure 3 wherein the shock detachment region has beon defined.  An 

additional plot of the tangent ogive geometric characteristics (0N. Vd, N) has 

also been presented in Figure 4.  This additional plot provides a rapid means 

of determining the shock region into which any one tangent ogive will fall. 

The prescribed method of this study for calculating pressure 

coefficients, C , represents a combination of the Generalized Newtonian throry 

and the shock-expansion method.  The application of this method begins with the 

Generalized Newtonian theory, i.e., 

(1) 

(2) 

0N ■ nose semi-vertex angle 

C ■ pressure coefficient at nose vertex 

C - C    sin2© 
p   pmax 

where C    - C /sin8eM 
Pmax   PN     N 

and 0 - local bodv sur 

For the special case of tangent ogives, a more convenient form of the C 
equation might be: P 

C - C    sin8© - C  sin;>Q  - C   (1 - x/')8        (la) 
P   Pmax PN sina9„    PN 

• 
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Using the appropriate value of nose semi-vertex angle, e„, 

enter the conical flow tables, such as those given in Table 6 of Appendix 1, and 

obtain a value of C  at a - 0° for a cone of equivalent semi-vertex angle. 
PN 

C   , a constant, can now be determined and the pressure coefficient distribu- 
pmax 

tion along the body surface can be calculated since 0 is a known quantity at any 

x/l  value.  A plot of C    vs. K for tangent ogives with If as a parameter is 
pmax 

shown in Figure S. 

I 

F-g. 5 C FOR TANGENT OGIVES 
rmax 

The local Mach number distribution along  the  surface of the 
body may be obtained directly from Table  18 of Appendix 3  once  a  value of p/p 
has been determined as follows: 

C    - P ■ Po .    P 
P          %            Pt ^o 

where p    * p       along a body surface meridian, t tN 

[ 
T •'• 
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Now 
(p/pt)N- (P0/Pt„) PN " Po        '• ■        N 

so 
P^   C  + p /q t„   p„  Ko Mo 1 _ PN 

% V*?i 

CPN 
+ Po^o 

CP - p/pt --TP/PTT— 
N 

Po^o 
(3) 

and 
(p/pt)N 

P/Pt - (cp ♦ po/qo) ^--rp^Tq; 
PN    o  I 

(3a) 

where (p/p*) is determined by first using the cone tables (such as Table 7 of 1 N 
Appendix 1) to obtain a value of VL,  corresponding to a particular value of 0N 

and M ; (p/p.) can then be obtained directly from Table 18 of Appendix 3 
O L   ^ 

(Prandtl-Meyer flow table)   for  the given value of MK. 

At  some point along the body,   the  C    calculated by  the 
Generalized Newtonian  theory will  offer poor agreement with the exact  solutions. 
At  or near the value of x/'  where  the C    from impact   theory begins  to deviate 

from the exact solution,   the  shock-expansion method   is  used  to extend  the 

solution by matching,   at  that point,   the surface    pressure coefficients and pre- 
serving the surface streamline  total head. 

The x/l point at which the  impact   theory should be  terminatod 
for  the case of tangent  ogives was found by correlating  the C    values obtained 

from the Generalized Newtonian theory with those  from exact  solutions and  this 
point was  found to be a  function of  the hypersonic  similarity parameter,   K.     By 
investigating a   vide  range  of  K values,   an empirical   expression was  determined 
for  the x/'   value at which  the  two methods should  be matched: 

(x/')     - 0.15 | + 0.60     for KS 2.667 m 

An  attempt was made  to match  both  the  pressure and  pressure gradient   for   the 
pointed bodies but  the pressure gradient,  which  is  a   function of body carvature 
angl»,   could not be matched  in  the region of small  curvature changes considered, 
It will  be shown  later,   however,   that  the pressure gradient can be matched on 
the   hemisphere  nose   in  the   region wher»  the  two methods  are  to be  matched  since 
the  body  curvature changes  are   large. 
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This equation has been plotted In Figure 6. 

Fig. 6  MATCHING POINT VALUE OF x/t FOR TANGENT OGIVES AT ALL 

MACH NUMBERS CONSIDERED 

Once x/l  Is known, the value of C at which the shock-expansion 

method starts (CL,  ) Is found from equation la.  In order to continue the SEM 
PSEM 

aft of the matching point, the following procedure must be used: 

a. 

b. 

calculate a value of p/p. al the matching point by 

using equation 3a; 

from the Prandtl-Meyer flow equations or tables13 

(Table 18 herein), determine the value of v (flow de- 

flection angle from M - 1) corresponding to p/pt above; 

this v Is used as v In the following step; 
m 

knowing the body surface angle at the matching point, 

and at other points downstream, 0, additional values 

and M aft of the matching point may be obtained 

by entering Table 18 with a known value of v 

(v - vm + 0m 

m 
of p/p 

0 - v + AO) and proceeding in steps of 
m 

d. 

v - v + A0 over the remainder of the body surface; 
m 

the additional values of p/pt may now be substituted 

into equation 3 and C values aft of the matching point 

can be calculated. 

(To illustrate the application of the "Present Method", numerical examples have 

been presented in Appendix 1 and Appendix 2 for a tangent ogive of fineness 

ratio 3 at M - 2. The afterbody pressure distribution, which is discussed in 

Section F, has also been included as part of the numerical examples.) 

' 

1 — -    ■ ■ c«,—• ■—• - 

■! 

I jp* 



»mm tr- 

17 

Using  the procedure outlined  above,   pressure coefficient  dis- 

tributions have been calculated using  the present  method  for five tangent  ogives 
with Vd values of  1.5,   2,   3,   6,   and  12 and  for Mach numbers of  1.5,   2,   3,   and 
6.     These results have been compared with the method of characteristics,   the 
shock-expansion method,   and  the  tangent-cone method  in Figure  7.     The agreement 
of  the present method with exact solutions  is exceptional  for all values of  the 
hypersonic  similarity parameter K.     (The only   instance where deviation was 
apparent was for M    -1.5atK-0.5 where  the  C    values from the present method o P 
matched those  from the exact solutions only when  faired.)     Notable disagreement 
was exhibited by  the  tangent-cone and shock-expansion methods  for M    -  1.5 at 
K - 0.5,   M0 - 2 at K -  I,   and Mp - 3  at K - 2;   the   remaining cases  indicated 
markedly improved agreement with exact solutions,   i.e.,   the high Mach number and 
fineness ratio cases approached the accuracy provided by the present  method. 
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The percent error in drag due to the disagreement of the C 

values from the above three methods with the C values obtained from exact 

solutions has been presented in table form below for the lowest Mach number of 

each K value.  These particular cases were selected because they represent the 

poorest conditions for the three methods; in spite of this, the present method 

yields near perfect agreement while the tangent-cone and shock-expansion methods 

offer considerable disagreement when each method is compared with exact solutions. 

Table 1.  Percent Error in Drag 

Method Mo 

Present 3 .5 

Shock Expansion      " 

Tangent-Cone        " 

Present 2.0 

Shock Expansion      " 

Tangent-Cone        " 

Present 3.0 

Shock Expansion      " 

Tangent-Cone        " 

Ordinarily, a presentation of "percent error in drag" only would 

not be sufficient to define the accuracy to which the method might predict the 

pressure distribution over the body.  This, of course, refers to the possibility 

of some one method predicting higher pressures at the vertex and lower pressures 

near the base (or vice versa) and as a result, the compensating errors in pres- 

sure would serve to lower the error in drag which is merely an integration of 

the pressure distribution values.  Fortunately, this condition did not preva.'l 

for the methods used as comparisons; a small compensating error was noted, how- 

ever, for the present method at M - 1.5 and Vd ■ 3. 

As mentioned earlier, the results obtained using the present 

method were correlated on the basis of the hypersonic similarity parameter, K. 

Figure 8 illustrates the validity of this correlation. 

2.  Secant Ogives 

Secant ogive is the name applied to an ogival nose cut off in 

length, I   , from its related tangent ogive length, *,  by passing a plane S ■ o • 

normal  to the  longitudinal axis of  the ogival  shape.     A family of secant ogives 
related to  the  tangent  ogive   (see pages  11  and   12  for sketch and nomenclature) 

/d _K_ 

0.5 
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of caliber N and nose curvature angle, 0,   can be expressed in particular by the 

following equation: 

x/' - 1 - /* - (y + r); where  x S /   < 
s.o. 

These shapes (for equal fineness ratios) offer high volume 

approaching that provided by the tangent ogives with the further advantage of 

exhibiting less drag than either the related tangent ogive or inscribed cone of 

the same fineness ratio.  Pressure coefficient distributions have not been pre- 

sented for secant ogives, as such, since they are merely forward segments of the 

tangent ogives discussed in Section D, Part 1. 

3.  Triple Cone-Tangent Ogive Combination 

This composite .iose design has been considered for two reasons: 

the nose shape is an unusual one wherein a triple cone segment preceeds a tangent 

ogive section and secondly, experimental data were available for comparison pur- 

poses.  Experimental data, of course, provide an excellent basis for comparison 

studies but often times the reliability or availability of such information is 

quite limited. 

Figure 9 presents a comparison of the C values obtained using 
P 

the present method, the shock-expansion method, and the experimental data.  The 
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CONE-TANGENT OGIVE COMBINATION 



21 

present  method   indicates  favorable  agreement at  both  M    -  2  and  4  whereas  the 

shock-expansion method  is quite poor  at   M    - 2 but   like  the  present  method,   sh( *s 
favorable  agreement  at  M    "4.     The   failure of  the  shock-expansion method   in  pre- 
dicting  the  proper C    values  at  M    m  2 was  to be expected since   the value of  the 

hypersonic  similarity parameter,   K - 0.59,   was  far  too   low   for  this method. 

4.     von Karman Minimum Drag  Nose  Shapes 

The von Karman  nose  shapes  are high volume-low  drag  nose shapes 
developed by  von Karman  for a  given   length and diameter  for practical  fineness 
ratios and moderate  supersonic  Mach  numbers.     The  nose  shapes  are defined by  the 

equation: 
r. 

r - —-  /0 -  1/2 sin  20 

where 0 - cos" (1 2x/')    . 

These  nose shapes  have mathematically   infinite  slopes at   their 

vertices  yet   for most practical  purposes are considered pointed  bodies.     Using 
the  present  method   for predicting C   ,   however,   these  noses  require special  con- 
sideration   in   that   they cannot  be  treated  as either blunted  or  pointed bodies of 

revolution  and  the  difficulty  arises   in   the proper determination of C In 
max 

an effort   to obtain starting  values of  C, to use with  the Generalized Newtonian 
max 

theory,   equation  1,   a systematic  study was   initiated whereby  cones were   fitted  to 

each von Karman nose  shape  tangent   to  the  nose at  some  x /'   value.     Using  the cone 

tables  at   a  given  free  stream Mach  number,   C was determined  and pressure  dis- 
max 

tributions were calculated using the Generalized Newtonian theory and compared 

with the theoretical values When the present method matched the theory, the 

x /J   and Mach number values were noted and the entire process repeated using 

various other fineness ratios and Mach numbers.  Ultimately, this study provided 
0 

the curve of Figure 10 wherein  x./  versus K has been plotted.  Accompanying this 

curve is a plot of C versus K as shown in Figure 11.  This is a fictitious 
rmax 

C    value to be used wit  the Generalized Newtonian equation (Eq. 1), 
''max 

C - C 
P   P 

sin20 , 
max 

for calculating pressure on von Karman noses. 

Solutions may be carried forward of x  /'   using the 0 at the desired point, x, 

and the empirically determined value of C   ; the error incurred is negligible 
pmax 

as indicated by the results. 

., 
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As in the cases for the previously discussed nose shapes, the 

Generalized Newtonian theory has been extended using the shock-expansion method. 

The matching point for the two methods was determined analytically and has been 

plotted as (x/A) versus K in Figure 12.  These values differ somewhat from those m 
for the oglval shapes (see Fig. 6). 

0.4 

Fig. 10  TANGENCY POINT FOR CONES FITTED TO VON KARIIAN NOSE SHAPES 

Fig. 11  C     FOl VON KARMAN NOSE SHAPES 
pmax 

a« a«    a«    i.o    i.t    1.4    14    i.t    t.o 
■ 

Fig. 12  MATCHING POINT VALUE OF x/< FOR VON KARMAN NOSE SHAPES 

' 
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The pressure distributions calculated using the present method were 

compared with the theoretical * values at M - 1.5 and 2 (approximately) for the K 

region In which the theory is applicable, i.e., from K - 0.55 to 0.922. Figure 13 

presents these comparisons and the agreement appears quite favorable. 
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The use of the present method has provided a means of extending 

the restricted K region characteristic Of the von Karman nose shapes.  The C 

xc/
t
1 and (x/')m curves were extrapolatec to K values of almost 2 and pressurlT^ 

distributions were calculated and compared with experimental data1 F gathered at 

ll0 - 1.61, 2.80, and 4.00.  This comparlSon is presented in Figure 14 and the 

agreement appears very good, indicating the useful range of the K values can now 

be more than doubled when applying the solut]ons offered by the present method. 

MgTHOO 
MCKNT METHOD 

00NC   1MWMCV  POINT 
CXKRIMCNT 

Fig.   14    PRESSURE COEFFICIENT DISTRIBUTION FOR  VON KARMAN 
MINIMUM  DRAG   NOSfi   SHApE,   i/d - 2.10 
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5.     Power  Si-rits   Minimum  Drag   Nose   Shapes 

The  minimum  dran   power  series   nose,   olten   referred   to  as   the   hyper- 

sonie   optimum  nose   since   it   elosely  approximates   the   profile  of   Newton's   hyper- 

sonic   optimum  nose,   is  defined  by   the  equation: 

These   nose  shapes,   like   the   von  Kaiman   noses,   have   mathematically   infinite   slopes 

at   the   vertex  and  calculationa 1   procedures   similar   to   those  performed   for   the   von 

Kaiman   shapes  had   to  be   carried  out   for   the  .'5/4   power   noses with  one   notable   ex- 

ception,   i.e.,   the  Generalized   Newtonian   theory  predicts   the  pressure  distribution 

very   accurately  alonß   the   entire  surface  of   the   nose.      Worthy  of   note   in   this   in- 

stance   is   the  Kcometry  of   the   power  scries   nose  shapes  which  have   a   finite   slope 

at   the   shoulder  or  base.      This  eliminates   the   need   for  extending   the   theory   usint; 

the   SEM since   this   type   of  body  has  no  shallow  angle   section wherein   the  General- 

ized   Newtonian   theory   is   inapplicable.     Thus  only   plots  of   C 
pmax 

and   x   /     were 

predetermined   for   these   nose   shapes  and  are  presented   in   Finures   15  and   Ifi. 

Fin-   15  C FOR 3/4 
•"max 

POWER NOSE SHAPES 

Fig. 16  TANGENCY POINT FOR 

CONES FITTED TO 3/4 
POWER NOSE SHAPES 
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Pressure distribution coefficients were calculated using the 

present method for three different 3/4 power noses of fineness ratio 3, 5, and 

7, for Mach numbers from 2 to 7.5.  These values were compared with theoretical " 

C values in Figure 17 and once again, the agreement is exceptional.  Note that 
p 

solutions were carried forward of the x /•'- value using the corresponding C 
pmax 

value in the Generalized Newtonian theory and the resulting error is negligible. 

6.  Isentropic Spikes 

Brief consideration has been given these shapes even though they 

are primarily used as supersonic diffusers for ramjet engines.  The function of 

the diffuser is to decelerate the air from its free stream velocity at the ram- 

Jet intake to a velocity at the combustor which is compatible with the available 

flame velocity. 

The true isentropic spike would ideally have a total pressure re- 

covery factor of one but the length of such a spike would make it impractical 

for use.  The long needle-like nose would, of course, make it structurally un- 

sound and the boundary layer build-up along the spike would destroy its effec- 

tiveness.  Due to these conditions, conical tips are usually attached forward 

of the "isentropic surfaces" with the end result of some loss in total pressure 

recovery attributed to the how shock-wave.  The spikes are usually designed 

such that the bow shock wave and the Mach lines from the compression surfaces 

coalesce at a point called the focal point.  This point, by design, usually 

lies at or very near the cowl lip of the ramjet engine depending on the desired 

conditions at the combustor.  Because of the design mobility in focal point and 

possible compromises in total pressure recovery for a given condition, isentropic 

spikes of basically two designs are available:  those which yield a constant 

total pressure recovery factor by merely varying the cone angle and free stream 

Mach number and secondly, those which have a fixed cone tip angle thereby causing 

the total pressure recovery to decrease with increasing Mach number.  These two 

designs" ^'" were investigated in the Mach number range from 2 to 4 and pressure 

distributions were calculated using the present method and compared with exact 

solutions.  The matching point value of Q  for the present method was arrived 

.. 
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at analytically and has been presented in Figure 18 as a function of free stream 

Mach number.  As noted the matching point 0 has been non-dimensionalized and 

given as 0m/0„ in order to eliminate the variable ©„; in effect, the matching 

point 0 has been normalized with respect to 6« thereby eliminating the need for 

a family of curves to represent spikes of different conical tip angles. 

«4     M 
PMC smuM 

U      5«     4« 

■■ 

- 

Fig. 18 RATIO OF MATCHING POINT 0 TO NOSE SEMI-VERTEX ANGLE VERSUS 

FREE STREAM MACH NUMBER FOR ISENTROPIC SPIKES 

Figure 19 presents the results of the C comparison between the 

present method and exact solutions for an isentropic spike with a 15° conical 

tip at M ■ 2.5, 3.0, and 4.0.  The agreement appears good at all Mach numbers 
and exceptional at M - 4.0.  It should be emphasized at this point, however, 

that the usefulness of the present method diminishes with increasing Mach number 

as noted in Figure 18, i.e., the value of 0 /0U has reached 1.1 at M - 4 in- m N o 
dicating the matching point lies very near the conical tip.  In essence, this 

condition indicates the shock-expansion method alone would be adequate (for most 

engineering purposes) in determining C at the higher Mach numbers for isentropic 

spikes. 
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E.  PRESSURE DISTRIBUTIONS FOR NON-LIFTING BLUNT-NOSED BODIES OF 
REVOLUTION 

1.  Hemisphere 

The hemispherical-type nose shape exhibits certain advantages for 

supersonic flight vehicles that are lacking for the generally accepted optimum 

pointed-nose bodies of revolution. Two possible features of the hemisphere type 

nose shape are its ability to readily accommodate radome systems and secondly, 

the reduced heat-transfer effects at high speeds which are characteristic of 

this type body. The latter feature, of course, is of utmost importance for re- 

entry bodies. 

The use of impact-shock-expansion theory in determining the pres- 

sure distributions for hemisphere type noses has been used in Reference 18 for 

very high Mach numbers (M ^ 7.7) and shown to be of great value.  Reference 18, 

however, defines the matching point only for M approaching infinity whereas 

the present analysis will consider variations in the matching point which result 

for free stream Mach numbers less than approximately 8. 

Solutions for the pressure distribution on the hemisphere nose 

are initiated using the Generalized Newtonian theory: 

C - C    sin"© 
p   pmax 

where C    - C /sin'O« 
pmax   PN     N 

Since sin80„ equals 1 at the nose vertex, C    " Cm .  For the blunt-nosed 
N pmax   PN 

bodies, a detached shock appears at the nose and the value of C  becomes the 
PN 

stagnation value behind the normal shock.  This stagnation value is a function 

of free stream Mach number only (for y  - constant) and can be readily calculated 

using the Rayleigh formula: 

praax   PN r** ^^{irftWif1-* 
For convenience, this equation has been plotted in Figure 20 and as illustrated 

reaches a limiting value of 1.84. 

At some point along the surface of the hemisphere, the Generalized 

Newtonian theory begins to show marked disagreement with comparison data and it 

is at this point that the shock-expansion method (which utilizes the Prandtl-Meyer 
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pmax 

relations) is used to extend the Impact theory.  This is accomplished by matching 

the C values for the two methods at the point of deviation; this point is de- 

termined by equating the pressure and pressure gradient given by the Generalized 

Newtonian theory and the Prandtl-Meyer relations as follows: 

From Generalized Newtonian theory, 

C - C 
P   P 

sin'O - 
max 0V2)poMo- 

Solving for p 

P - P0 +0'/2)p M 
a C    sin80 

pmax 

$.(r/2)poM0' C    sin 20 
max 

and 1  dp 
"p" afc   i 

(r/2)U*   C    sin 20 
o  P max 

+(r/2)M » C    sin'o op Kmax 
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From the Prandtl-Meyer relations, 

By equating the above product of ——— -£  from the two methods, the matching point 

0 can be determined.  It is apparent that the value of 0 at the matching point is 

a function of M and a plot of M versus matching point 0 has been presented in 

Figure 21.  (Note that for very low Mach numbers, there is no point at which both 

the pressure and pressure gradient are the same for the two methods and the curve 

has been extrapolated in this region.)  For sufficiently high Mach numbers 

(M >21), the matching point 0 reaches a limiting value of approximately 35.4°. 

This fact is borne out by Vaglio-Laurin and Trella18 as they Indicate the match- 

ing point O for M approaching infinity can be obtained by the following ex- 

pression: 

cot 0 - -£- 

2(l-y) 

(sin Ö) 
2 

(sin O) 

2(l-y) 
r 

■1/2 

-1 

Once the matching point 0  has been determined, the remainder of the solution is 

quite simple since p/pt can be calculated using: 

Cp - P/Pt 

:PN 
+ »Ai 

(p/pt) "o ^o 

Knowing p/Pt.   the  Prandt1-Meyer relations or tables provide   the  local Mach 
number and  flow deflection angles  (from M -  1)   so that one may proceed along  the 
surface of  the body according  to v + AO  (see page  16). 

Pressure coefficient distributions were calculated for the hemi- 
sphere nose using the present analysis and compared with experimental data19 at 
M    -  1.82,   2.81,   3.74,   and 4.76 and  a   theoretical treatment  using  numerical 

analysis1 e   at  M    - 7.7.     The agreement of  the present  analysis with the  com- 
parison data   is quite favorable as  illustrated   in Figure 22. 

2.     Hemisphere-Cone Combination 

The  hemisphere-cone  type nose has  found extensive use among high 
speed vehicles for much the same reasons as the  hemisphere nose.     The hemisphere- 
cone nose,   although not  exhibiting  the high volume of a hemisphere,   does have 
the advantage  of reducing the  heat-transfer effects at  high  speeds  and  in addition 
provides somewhat more stability than that  of the hemisphere.     Recent studies by 

1 
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Perkins, Jorgensen and Sommer'3 have also Indicated that the drag of a nose 

shape consisting of a hemispherical surface faired into an expanding conical 

surface can be less than that of a sharp cone of the same fineness ratio at all 

supersonic Mach numbers. 

Pressure distributions have not been calculated for the hemi- 

sphere-cone nose shapes since the procedure would be similar to that of the 

hemisphere.  Moreover, the present analysis will not predict the over-expansion 

of the flow at the hemisphere-cone Juncture which occurs for Mach numbers less 

than about 3,  Above M - 3, however, the present analysis should predict the 

pressure coefficients accurately enough for engineering needs since the expanding 

flow over the hemispherical tip does not reach a lower pressure than the exact 

value for a cone having the same slope as the conical afterbody and, in addition, 

this pressure remains essentially constant over the entire conical afterbody as 

would be predicted by impact-shock expansion theory. 

Reference 20 presents experimental data which illustrate the flow 

over-expansion phenomenon associated with the hemisphere-cone type nose shapes 

for Mach numbers less than 3.  The extent of the over-expansion as pointed out 

in this reference is dependent primarily on the slope of the conical afterbody 

surface- as the slope decreases, the over-expansion of the flow appears more 

prominent.  At all Mach numbers, however, the pressure on the conical afterbody 

returns almost to the exact value of a cone with a slope corresponding to that 

of the conical afterbod.'.  With this in mind, a first approximation for pre- 

dicting the pressure coetficients of hemisphere-cone noses by the present anal- 

ysis for M less than 3 is quite possible.  It has been shown that the present 

analysis would give accurate results over the hemisphere portion of the nose and 

since experimental data have Indicated the conical afterbody pressure approaches 

that of the equivalent cone, it would be within the acceptable accuracy limits 

of most engineering methods to merely fair the present analysis solution into 

the equivalent cone solution. 

F.  PRESSURE DISTRIBUTIONS ON NON-LIFTING CYLINDRICAL AFTERBODIES 

Fenter's13 method has been used to predict the pressure distributions 

over cylindrical afterbodies.  This method, which is a simplification of the 

second-order shock expansion method, yields the following relation for pressure 

distribution: 
s 

Pn/po * Pcn/Po + ^n'/Po " Pcn^ e ^ 

where s ■  segment length 
/ -  nose length 

■T 
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K - hypersonic similarity parameter, V^d/' 

d - diameter of body 

with subscripts and superscripts 

n - specific segment of equivalent tangent body 

en - condition c.. the equivalent tangent cone of a specific segment 

' ■ condition at the most forward point of an equivalent tangent 
body segment (s - 0) 

Actual Body 
Shape 

Tangency Point 
for Segment 2 

d/2 

*— x 

The values of p /p and Pcn/P0 are the actual pressures on the ogive 

(tangency points) whereas the primed values P-'/p represent conditions at the 

most forward p int of any segment and are obtained using the Prandtl-Meyer re- 

lations or tables for expansions through 6 0n+1,  etc. 

Since  the Fenter method  is being used  on the cylindrical  afterbody 
alone,   the  relation for pressure distribution reduces to: 

*- 6H Ax/i 
(4) 

where: 

and 

Ax 

^cn 

segment length 

nose length 

1 since the equivalent tangent cone angle 
and C   - 0 

pcn 

- 0° 
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I 
I 

Using equation 4,   the pressure coefficient  becomes: 

P, (SH (5a) 

Ax/* 

P P(x/l 1) 
(5b) 

where Ax/' - non-dimensional distance  from base of nose,  where x/t  - 1,   to 

the desired point on the afterbody. 

G.     APPLICATION OF PRESENT METHOD TO LIFTING POINTED BODIES OF REVOLUTION 

Reliable  theory amenable to  rapid hand calculateonal procedures for de- 

scribing the pressure distributions along lifting bodies of revolution is prac- 

tically non-existent,  especially for  higher angles of attack.     The pressure 

distributions provided by  the present method for angles of attack up to 10 de- 

grees yield results which are comparable and at times better than various other 

available methods.     Theoretical   treatment of the problem at higher angles of 

attack  is hampered by the effects of cross-flow separation on  the  leeward side 

of  the body and compressibility effects when at high cross-flow Mach numbers. 

In the following  two sub-sections,   the application of the present 

method  to bodies of revolution at low and moderate angles of attack is described 

and numerical  examples are presented   in the appendices. 

1.     Bodies of Revolution at   Small  Angles of Attack 

The present method  for predicting pressure distributions on non-lifting 

bodies will  also be used on       the lifting bodies of   revolution.     The combination 

of  Generalized Newtonian  theory  and  the shock-expansion method will  be used to 

define  C    for  the nose section and the method of Fenter1*  will be used to con- 
P 

tinue the solution over the cylindrical afterbody.     Beginning with the Generalized 

Newtonian theory.   Equation  1  is modified to read: 

sinaö C_ - C_ 

where 

max 

Fmax HN 

(6) 

(7) 

sin  b  - sin O cos a  - cos   '*' cos 0 sin a (8) 

and  0 ■ body surface inclination angle 
ill - radial meridian along body surface 

a  ■ angle of attack 
fi ■ angle between free stream and tangent to 

the body surface 

1 
I 
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ISO1 

For a - 0°, sin B - sin 0. 

The value for C_ on the desired meridian, ♦, nay be determined 
max 

The NASA a i >?a zero and small angle either experimentally or theoretically, 

of attack cone tables can be used for the starting values on a cone fitted to 

the nose vertex If experimental data are lacking; the procedure Is as follows: 

The general expression for pressure coefficient Is: 

v^U-O- JL-JL* P„  P. P„ 

where p, refers to conditions at zero angle of attack and the quantity p, /p 

may be obtained directly from the zero angle of attack cone tables". The ratio 

of p/p, which Is the ratio of static pressure at angle of attack to static 

pressure at zero angle of attack can be calculated using the theory of Stone*'7 

wherein the velocity, pressure, and density are expanded In the following series 

and higher order terms in a are neglected: 

*   *    * 
M - M, - oH, cos * 

p - p, + ap-, cos ♦ 

p - p, + ap, cos * 

where the flow quantities M, , p, , and p, refer to conditions at zero angle of 

attack and Hp, p?, and o9   are the flow quantities related to the effect of angle 

of attack.  Reference 23 provides solutions for the above equations yielding, 

The necessary tables required In the calculatlonal procedures of this sub- 
section have been reproduced from the references and included In Appendix 1, 
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among others,   the  following expression: 

r 

P/Py   " 

-1Ä 
(y+D - (r-D M 

(y+D - (y-D i 
-a   (Ss/R)   cos   i 

References 21 and 22 have provided tabulated values of M, ,   1^ , 

and Sr/R for use  in determining p/p;   and  subsequently,   C  .     Since conditions at 

the nose vertex were used  to calculate  the pressure coefficient,   this value of 

C    becomes C       from whence C ,   Equation   (7),  may be determined.     Starting 
'N max 

must be calculated  for each value of  ^ at  the desired angle of values of  C 
pmax 

attack.     Once  this  is done,   the Generalized Newtonian theory.   Equation  (6),   is 

used  to calculate  the values of C    along each meridian up to  the point where the 

shock expansion method is used to extend  the  impact  theory;   for  the cylindrical 

afterbody.   Equation  (5a)  or  (5b)   is used  for  the pressure coefficient distribut- 

ion. 

The  !   cal  Mach number at   the nose vertex  (where  M - IL.)  may be 

determined  from   l   c    elation8*: 

M8   - 2   il** 

(y+l)  -   (y-1)  M 

On  the  leeward side of  the body,   certain portions of  the surface 

will  lie   in  the  "aerodynamic shadow"  and  the Newtonian theory  cannot  predict  the 

pressures  in  this  region.     This shadow  area on the body,   shown pictorially here. 

• 

— Shadow  Area 

can be determined quite easily along any   leeward meridian by  setung sin h - 0 

anJ solving  for 0.     For any meridian  in general,   the 0 at which  the shadowed 

area starts   is: 

0 - tan-1    (tan a cos   #) 
for   >   - 0° 0 - o 

.M ■■' 
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Thus   the  shadow area begins  along  the  | - 0°  meridian at  the point where  the 

body  surface  angle   Is equal   to   the  angle of  attack. 

On all  meridians,   the matching point   (where   the  shock-expansion 
method   Is used  to extend  the   Impact   theory)   Is obtained  directly  from plots 
presented   In prior sections  . f   this  report,   e.g.,   Fig.   6,   page   16.     When  the 
matching point  lies within  the  shadowed area,   the   .nock-expanslon method should 

be  started at  the x/'  value where  sin  r) - 0. 

A numerical  example   Is presented   In  Appendix   1 wherein  the pressure 
coefficient distribution has been calculated   for a   tangent  ogive-cylindrical 
afterbody combination at  M    -  2.0 and  ^/d - 3  at  an  angle  of attack of  5 degrees. 
Tables  are   included which provide   the  necessary parameters   for determining  the 
pressure  and  local Mach number distribution.     For  the  numerical  example,   start- 
ing  values of C      were  determined   for seven meridians beginning at   | - 0°  and 

proceeding  in 30 degree  Increments up to    t ISO1 The pressure distribution 

along the | - 180° meridian is the only one for which the C calculation is shown 

since the procedure is similar for each meridian.  The calculation of the cylin- 

drical afterbody pressure distribution using Equation (5b) has also been in- 

cluded for the  - 180° meridian. 

The pressure distributions calculated by the present method for the 

numerical example of Appendix 1 are presented in Figure 23 where experimental 

* 
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 1  i    i    i   I "^K-* ir—i ■--*-r~~A 
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Fig. 23  PRESSURE COEFFICIENT DISTRIBUTION FOR A TANGENT 
OGIVE-CYLINDRICAL AFTERBODY COMBINATION AT a - 5°, 

| - 0°, 30°, 60°, 90°, 120°, 150°, and 180° 
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values  have been Included for comparison purposes with the subsequent indi- 

cation of good agreement. 

2.  Bodies of Revolution at Large Angles of Attack 

The calculation of pressure distributions for angles of attack 

greater than about 5 degrees requires somewhat more time since the starting 

values of C  mast be determined from the mx86'■■,'■'' cone tables (or comparable 
PN 

information) unless experimental data are available.  Once the starting values 

have been obtained, the procedure is similar to that used for the small angles 

of attack. 

Since the MIT cone tables are being used to obtain starting values 

at the nose vertex, the symbols and nonenclature adopted by this widely used 

reference will not be altered to conform to the nomenclature of this report. 

Any attempt to redefine or re-reference the parameters would inevitably tend to 

compound the existing complexity of the equations.  The symbols and nomenclature 

from the MIT cone tables which are used in the present study are defined on page 

4 of this report.  In addition, the parameters required for calculating C  have 
PN 

been picked from the MIT cone tables and are tabulated in Appendix 2 for ready 

use.  If any intermediate values of the parameters are required, they can be 

obtained much more readily when nomenclature consistent with the reference source 

is used. 

The theory of Stone33is used once again  to determine the flow 

parameters which have been expanded  in the  following series;   for  large angles 

of  attack,   the higher order  terms  in a cannot be neglected,   i.e., 

P/p"-   1  + a A,   cos   1 + a8   (A?   +  A-,   cos 2*) 

o/F -  1  + a B,   cos  ♦ + a8   (B?   +  BT   COS If) 

where p/p and o/F are the pressure and density on the cone surface at angle of 

attack divided by the corresponding values at zero angle of attack.   A,   and B, 

specify  the first order effects  of a,   and A8 ,   As ,  BP ,   and B,,   represent the second 

order effects of o.     Proceeding  further: 

A. 

Ar 

■ -Vp 

T,a 

- Pc/p + -J- zr + sr 2p cot  0, 

As"   Pr/P   +  -S-  — —— cot 0 
2p s 

■• 

0 

I 
I 
•** 



41 

B,    -  -v/ö 

B8   -   o/ö  + -J- S- + 4- cot  0s 0 ^a» 2B s 

1 

B3   -   os/c  + 1     u» 

2? 
cot 0. s 

By entering  the cone  tables at  the  desired  free stream Mach  number 

(corresponds to M with no subscript  in tables)   and  the nose semi-vertex angle 

0M equal  to 0  ,   the  following quantities may be obtained: 
PI s 

0 ü/c and V/c* 

i/p and  '/P 

P0/P.   P?/P.   OQ/O and  Pa/c 

With these quantities,   A, ,   A2 ,   A? ,   B, ,   B, ,   and Bs  may be evaluated 

and subsequently p/p can be obtained.     This value of p/p must now be  referred 

to  the  free stream in order to calculate the surface pressure coefficient,   i.e., 

P    m    P    _p_      (subscript  I   denotes free 
Pi p      p. stream  in  tables) 

- _      p 
where £- - E-    _-    and  the quantities p/p^ and p„/p,   are taken directly  from the 

Pi Pw     P; ■ w 

tables herein.     The quantity p/pw will be  listed as p /p     (p    is the cone  surface 

static pressure and p     is  the static pressure   immediately behind the shock wave). 

Knowing p/p, ,   the pressure coefficient at any meridian,   I,   on  the 

cone surface can be calculated using: 

S-'-Mir-1)   -^(Ir-O 
Since the value of C for a given ♦ is determined at the nose vertex, this 
represents the starting value of C 

To compute the local Mach number at the nose vertex, we begin by 

expressing the entropy in powers of a similar to that for pressure and density: 

S - S - a S, + o" (Sp + Ss) 

These values appear as u and aa in Reference 26. 
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where S. - c 

S, - 

S. - c_ 

Now from the equation of state, 

o/c - (p/p)1/r    e rcy 

A,  - r B,_ 

r Bf/4  -  A,"/4  + Ae - r BP 

r $ /* -  Af/4  +  A3 - r B3 

_ (s-S) 

p/p has already been determined and (S-S)//cvmay be calculated using the afore- 

mentioned entropy distribution equations wherein the quantities A, , Ag, A3 ,   B, , 

B: , and B,. have also been determined (o/c can also be calculated using the 

equation on page 40).  Finally, from Bernoulli's equation, 

V- + .^P.« - c*  wh^re c - limit speed. 

Dividing by a* and simplifying. 

if   m <£_ _ _2_    _    c^ 5^ 2_ 
a- r-i * a»    y-1 a-   a 

where: — - 2LR    and    ca/äa   is obtained from Table  17 herein. 

A numerical  example has been provided  in Appendix 2 which  illus- 
trates the manner  in which C    was obtained for a  tangent cfrive-cylindrical   after- 
body combination at M    ■ 2.0,   Vd - 3 and a -  10°.     As was done for the numerical 
example at  5 degrees,   starting values of C      were calculated and are shown  for 

PN 
.   - 0°  to 180°  in 30°   increments.    Only the calculation for C    values along  the 
v  -  180" meridian  (including the pressure distribution on the cylindrical  after- 
body)   are shown  in the  numerical  example. 

Figure 24 presents the pressure distribution coefficients calculated 
by  the present method and experimental  values96   which were used  for comparison 
purposes.     The agreement  at  a - 10°  is not as good  as  that  for  the a ■ 5°  case 
especially on the  leeward meridian but this was more or  less  to be expected  since 
flow separation may now be present.     The more windward meridians  indicate good 
agreement with the experimental  values. 

.. 
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APPENDIX  I 

CALCULATION   OF PRESSURE COEFFICIANT DISTRIBUTION FOR 

A TANGENT OGIVE-CYLINDRICAL  AFTERBODY   COMBINATION 
AT AN ANGLE OF ATTACK OF 5  DEGREES 

A. CONDITIONS 

MCE «T«** MACH NUMtKR 

MOM niMNEM RATIO 

NOU «Ml-VERTEX   ANM.E 

HWEKSOMC  «MIUmiTV   nMAMCUR             R«Jff 

RATIO Of   SPECIFIC    HCAT8         X* 1.406 

B PRESSURE   COEFFICIENT AND MACH NUMBER  STARTING VALUES, X// «0 

— M.tl 

  t/4** 

— e,, »lojet* 

cp • (^/V<F/F#-0'( VVP'W^**!] 

7 

' L(y+,)-(y-')M:'j    • 

ee. Ai-i 

■•• M*-OMJCO«^. 

„r   EM*' i 
Qy.)-(y-i)M»8J 

A  IN  RADIAMS 

l/t 

CO    Al-8 

CO.   AI-3 

EO.   AI-4 

mmm     1/',
# «UM    PWHAWENDIXI. TMLE •, MM   SO 

M,       . 1.4241 " ' "    TAM.E 0.      '     _ai_, 

Mt     • -.7180 • '        "    TMLE »,    '     _a2_ . 

8t/a>.00BI " " "    TAOLE II.      *       M    . 

NUMERICAL   SOLUTIONS PON  EOUATIONO   AI-I,AI-S, Al-S,AND AI-4 ARE SHOWN  IN 
COLUMNS  S.« , 4. AND •  RESFEOTIVELV   OP    TAOLE  E, PAOE  **_ . 

• > 

■ 

i 
i 
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APPENDIX I 

0. PRESSURE COEFFICIENT AND  LOCAL MACH NUMBER DISTRIBUTIONS 
ALONG   f «ISO* MERIDIAN   (KC WUNC  MS) 

CONDITIONS AT NOSE VERTEX 
MN       .MM 

0- •.4117 

C.        • 2 9033 - 

COLUMN   t. TMLC t 

"       10. " 

"        •• * 

ee. 7 

I Cp VALUES (COLUMN S.DtSLE 4) HIOM TME NOK  VCRTCX   UP  TO THE M*TCHINO 

POINT,(X//l^.ARE OOTAINEO  UMM EO.C. (THE MATCHIN«  POINT SOLUTION   IS 

OtSCUSSEO ON PAOE IS). 

tCp VALUES (COLUMN 4,'OISLE 4) PROM (X//)m TO t/J*i ARE  CALCULATED   USINO 

THE PROCEDURE OUTUNEO ON PAOf.9 IS AND  (6 .FOR   THIS  PARTICULAR EXAMPLE, 
C   • 2 iOM ( P/Pt) - .9871      (EO S) 

3ALL LOCAL MACH NUMBER  VALUES (COLUMN S.TMLE 4)   ARE OBTAINED   PROM TMLE 

M, APPENDIX 3 , USINO  THE   APPROPRIATE   VALUE  OP    P/Pt   (COLUMN 8, TABLE 4» 
CALCULATED   PROM  EO. 90. 

TABLE 4. PRESSURE   COEFFICIENT   DISTRIBUTION AND MACH NUMBER 
ALONG  ^«ISO*  MERIDIAN, a «5* 

1 1 9 4 9 8 7 8 9 

*/t SIN'S 
GN 
EOS 

CP 
SEM 
EO 3 

e AG V 
'"» 

M 

1MLEN 

0 .18448 .4117 — _ — — .8740 1.486 
.1 .19889 9904 - - - — .8988 1.899 
.8 .11740 .8899 - - — - .2980 1.608 
.9 .08878 .8488 — — — — .8198 1.689 
.4 .07804 .1884 - - - - .1889 1.719 
.S .08189 .ISS4 - — - — .1819 1.771 
.8 04851 .1184 - - - — .1888 1.880 
7m .09974 .0848 .0848 8.884 - 88.804 .1874 1.868 
.8 — - .0418 9.718 1.888 84.488 .1488 1.891 
.9 — - .0088 1889 1.880 88.988 .1888 1.888 

1.0 — - -.0998 0 I.8S8 28.188 .1189 8.066 

GN •OENERALIZEO   NEWTONIAN 

SEM • SHOOK EXPANSION METHOD 

G ■ BOOT SURFACE  ANGLE 
.7m • MAT0HIN8 POINT OP OENERALIZEO NEWTONIAN  MID SHOOK EXPANSION METHOD 

M ■ M 00RRESP0NDIN8   TO    P/P  PROM   PRANOTt - MEYER   TABLES 
V • PRANDTL-METER   PLOW DEFLECTION   AN6LE   C0RRESP0NDIN6   TO   M 

•   • 

• • 

.. 

. 

: 

■. - • 
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APPENDIX I 

E. CYLINDRICAL AFTERBODY  PRESSURE COEFFICIENT   DISTRIBUTION 
ALONG ^«180* MERIDIAN 

USIN« CO. sb 
AXAt 

CP •w. 1) 
• 1 

VALUES    OF   Cp    ON   THE   CV   «DRICAL   AfTERBODV    ARE 
CALCULATED    AS    SHOWN   IN   TABLE   8. 

CP(X/i«l)'  '■0SM • FN0M   COLUMN  4,TABLE 4. 

TABLE 5.    PRESSURE COEFFICIENT DISTRIBUTION  ON  CYLINDRICAL 
AFTERBODY, a-5' 

1 B | 4 

x/i A*/* 
.ft 

•    K Cp«-(IW€ ® 

1.0 
I.I 

1.2 
IS 
1.4 

I.B 

0 
.1 

.2 
S 

.4 

.8 

1.0000 
.BS07 

.7408 

.•978 

.8488 

.4724 

-.0386 

-0288 

-.0248 
-.0214 
-.0184 

-.0188 
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CALCULATION   OF PRESSURE COEFFICIENT DISTRIBUTION FOR 
A TANOENT OSIVE-CYLINDRICAL  AFTERBODY COMBINATICN 
AT AN ANGLE OF ATTACK OF ID   DEGREES 

— ■|*a 

      Ö, » ©H ■ ».9U* 

A. CONDITIONS 

met STRiAN  MAOHNUMKR 

NOSC PINCNESS RATIO 

MOM NMI-VERTIX AMLE 

HYPERSONIC SIMILAMTY MRAMETER            K«j»T 

RATIO or sraoinc HEATS —   Y »i^o» 

B. PRESSURE   COEFRCIENT STARTINO VALUES ,  X/Jt >0 

<^ MR/q^R/R.-l) i(l5/q,)[TR/#«P/R,)-T] tO.   At-1 

R/?«i + aAleos^'4 a (A^AJCOS t^),      a M RADIANS   EO. AS-S 

WHERE: A,*-*}/* 

t..t 
A, • R,/P* (r/oa'/a ♦('?/rf)ooT eg 

A8 • P^/f ♦ (r/l)Ot/ 8*- (i7/lP)0OT •, 

ff/f      »1.7363 «W)t» APPENDIX 2 ,    TABLE   17, RMES ^1 .i2., AND Jl-. 

^/f    »-«.»s m • ■ 

|/R      « 2.723 it II ■ 

O'/C*   •.33t63 ii N « 

ö'/C*   ..13368 ■ H ■ 

P/P,      ■ I.6SSS ■ II ■ 

»;/«,    ».MTU 
t 

75» 
A^-I^SSS A 

t'" .07326 A  . I.97S6 

NUMERICAL   SOLUTIONS   FOR EQUATIONS    At-1 , AND At-2   ARE   SHOWN   IN 
COLUMNS S  AND 7   RESPECTIVELY    OF    TASLE   It, M6E   85. 

THE NOMENCLATURE    USED    IN   APPENDIX t    CORRESPONDS   TO THAT USED   IN 

THE    MIT   CONE    TABLES     OP   REFERENCES   tS,t7,ANDtS. 

••     . 
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TABLE 12. PRESSURE COEFFICIENT STARTING VALUES, X/i ■O.ailO* 

1 1 • 4 1 • T • • 

* «•f COS t^ OA.OM^ A aä^oMt^ 

n.M-t 
3; MM® vv 

0 IJOOOO 1.0000 -.9050 -.oott .0402 .7M* I.9MC .I9M 

so .•MO .»000 -.tU4 M .0901 .7494 1.4078 .146» 

•0 .»000 -MOC -.!•!• tf -.0901 JMM •.MO« .I7M 

•0 0 -1.0000 0 
H -.OMt Mit I.7t4l .MB» 

wo -4000 -.MOO .ISIS M -.0901 I.IKt f.O»OI .977» 

ISO -.•MO .9000 .Nt4 ■ .0901 l.t»09 f.9717 .4»0» 

.•0 -1.0000 1.0000 .9090 ■ .MOI 1.9410 t.MC7 .UM 

C. MACH NUMBER STARTING VALUES, X/Jt«0 

.I99M 
• TMtt     mOM AWCMIX C, Vmtt 17. 

s-S 

a) ocitRMiNi (S-S)/ /«y      s« 5 - as, •*> a,(8k+ 85> 

wtmm  s. ■ cu v[A,-r"] 
S' cw [}'rB*/♦, -(A"/4) + A,- rs^ 
s,« c¥ QrB*/4) - (AJ/4) ♦ AS- r^ 

PROM HUT B,   A,« -1.7949        Af • -.07924       A, I 14794 

Bt« /j/^+d/t) J^/B** ilt/tP) COT et 

•s" /j/^ ♦«•/t)o,/af- (f/»^) cor et 

£/P • 1.20« mOM   APPENDIX 2, TABLE 17. 

^/?..M4 

/{/A'ISM 

M B|*-l.tOM Bt*-.4070 Bs« 1.9449 

s-i'-as + o (ys,) 
(S-S)/ycv.-a [jyl^n^ ^(Af/HrMB^E) ♦(A|4Aal/y-(Bt+B||j] 
(S-S)/Xc    • .0044097 

.-Jfcä..«,. 
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E. PRESSURE COEFFICIENT /MD LOCAL MACH NUMBER   DISTRIBUTIONS 

ALONO f'ISO*  MERIDIAN   (SEE PIOURE Ml 

THE SAME PHOCEOURE OUTLINED FOR THE EXAMPLE Of   APKNOtX I   HAS lEEN 
USED IN THE POLLOWIM   EXAMPLE   TO OtTAIN THE  MEtSkME   AND   LOCAL 

MACH   MUMIEN   OltTNIMITIONt ON  TME NOK  AND OVLINDNWAL   ATTERtOOY | TNE 

RESULTS   NAVE   MEN  SUMMARIZED  IN TABLES  IB AND 16. 

CONDITIONS AT NOSE VERTEX 
Mg        «1364 - COLUMN  B,    TABLE 19 

It 

lP/Pt)     ».SMS            - •.        " 

CL         •.SSBS 
^N 

I •.        * 

Cu        • t.tSM 
rMAX 

EQ. T 

Cp        «2.7041   (P/y- .3571 EO. S 

TABLE IS. PRESSURE   COEFFICIENT  DISTRIBUTION AND MACH NUMBER 
ALONO $ «ISO* MERIDIAN , a ■ 10* 

1 I 9 4 8 8 T 8 8 

x/c BIN* 8 Cp 
ON 
EO.B 

Cp 
SEM 

EO. 8 

1 AB V "'t 
M 

MUM 

0 .2SSS9 .888« — — — - .8808 I.8B4 
.1 .80872 .471B - - - - 9086 1.417 
J I7BI2 .4108 - - - - .8840 1.471 

J .18421 .1887 - - — - .2828 1.824 

A .18102 .8008 - - - - .2482 1.878 

a .IOBBO .2814 - - - - .2290 1.880 

B .OBBBB .2084 - - — — .2084 I.BBI 

% .07217 .1888 .1689 8.884 — 18.71« .1888 1.781 

J - - .MBB 9.718 I.BBB 20.984 .1788 I.7B8 

§ - — .0720 1.888 I.BBO 22.444 .1887 1.880 
1.0 - - .090» 0 I.B8B 84.808 .1488 1.828 

ON 
SEM 
B 

•7m 
M 
V 

•SENERALIZEO  NEWTONIAN 

• SHOCK EXPANSION METHOD 

• BODY BURRtOE   AMBLE 
• MATCHIN« POINT OP «ENERALIZED NEWTONIAN AND SHOOK EXPANSION METHOD 

• M C0RRE8P0NDINB   TO    P/P  PROM  PRANOTL-MEYER  TABLE« 

• PRANOTL-MEYER   PLOW DEPLECTION   AMLE   CORRESPONOIN«   TO M 
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E. CVLINOPICAL APTEfWOOY  PRESSURE COEFFICIENT  0I8TWISÜTION 
ALONG     V 'ISO*  MERIDIAN 

U«M 10. tb 
AX/A 

V >(X/Ai|) 

V»LÜfA    Of   (y    ON   IM   OVLINOMOM,   ATTCMOOV    A« 
CALOULATCO    At    SNOMTN   IN   MLK   I«. 

CL(KÄ,.)•    OJOt   , MOM   OOLUMN 4, TMLC «. 

TABLE ML   PRESSURE COEFFICIENT DISTRIBUTION  ON   CYLINDRICAL 
AFTERBODY , O ■10* 

1 t S 4 

X/A AX/X r# Op« .oaot ® 

1.0 0 1.0000 .osot 
I.I .1 •407 joaao 
l.t .8 .7404 .0889 
IS .» .«IT« .0197 
1.4 •4 .84M .0170 
1.9 A 4784 M49 

: 

: 

: 

: 

i 
i 

- - - 
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APPENDIX 3 

TABLE  18.   PRANDTL-MEYER FLOW PARAMETERS 

P/P« P/Pt 

1.00 0.5283 0 6.00 .6334 -3 84.955 
1.10 .4684 1.336 6.10 .5721 -3 85.635 
1.20 .4124 3.558 6.20 .5173 -3 86.295 
1.30 .3609 6.170 6.30 .4684 -3 86.937 
1.40 .3142 8.987 6.40 .4247 -3 87.561 
1.50 .2724 11.905 6.50 .3855 -3 88.169 
1.60 .2353 14.861 6.60 .3503 -3 88.760 
1.70 .2026 17.810 6.70 .3187 -3 89.335 
1.80 .1740 20.725 6.80 .2902 -3 89.895 
1.90 .1492 23.586 6.90 .2646 -3 90.441 
2.00 .1278 26.380 7.00 .2416 -3 90.973 
2.10 .1094 29.097 7.10 .2207 -3 91.492 
2.20 #.9352 — 1 31.732 7.20 .2019 -3 91.997 
2.30 .7997 — 1 34.283 7.30 .1848 -3 92.490 
2.40 .6840 — 1 36.746 7.40 .1694 -3 92.971 
2.50 .5853 — 1 39.124 7.50 .1554 -3 93.440 
2.60 .5012 ■ 1 41.415 7.60 .1427 -3 93.898 
2.70 .4295 — 1 43.621 7.70 .1312 -3 94.345 
2.80 .3685 m 1 45.746 7.80 .1207 -3 94.782 
2.90 .3165 m 1 47.790 7.90 .1111 -3 95.208 
3.00 .2722 ■ 1 49.757 8.00 .1024 -J 95.625 
3.10 .2345 _ 1 51.650 8.10 .9449 -4 96.032 
3.20 .2023 — 1 53.470 8.20 .8723 -4 96.430 
3.30 .1748 m 1 55.222 8.30 .8060 -4 96.820 
3.40 .1512 m 1 56.907 8.40 .7454 -4 97.200 
3.50 .1311 — 1 58.530 8.50 .6898 -4 97.573 
3.60 .1138 m 1 60.091 8.60 .6390 -4 97.937 
3.70 .9903 ■i ^ 61.595 8.70 .5923 -4 98.293 
3.80 .8629 2 63.044 8.80 .5494 -4 98.642 
3.90 .7532 -2 64.440 8.90 .5101 -4 98.984 
4.00 .6586 -2 65.785 9.00 .4739 -4 99.319 
4.10 .5769 -2 67.082 9.10 .4405 -4 99.646 
4.20 .5062 -2 68.333 9.20 .4099 -4 99.967 
4.30 .4449 -2 69.541 9.30 .3816 -4 100.282 
4.40 .3918 -2 70.706 9.40 .3555 -4 100.590 
4.50 .3455 -2 71.832 9.50 .3314 -4 100.892 
4.60 .3053 -2 72.919 9.60 .3092 -4 101.188 
4.70 .2701 -2 73.970 9.70 .2886 -4 101.479 
4.80 .2394 -2 74.986 9.80 .2696 -4 101.763 
4.90 .2126 -2 75.969 9.90 .2520 -4 102.043 
5.00 .1890 -2 76.920 10.00 .2356 -4 102.32 
5.10 .1683 -2 77.841 10.10 .2205 -4 102.59 
5.20 .1501 -2 78.733 10.20 .2065 -4 102.85 
5.30 .1341 -2 79.597 10.30 .1934 -4 103.11 
5.40 .1200 -2 80.434 10.40 .1813 -4 103.36 
5.50 .1075 -2 81.245 10.50 .1701 -4 103.61 
5.60 .9643 -3 82.032 10.60 .1596 -4 103.86 
5.70 .8663 -3 S2.795 10.70 .1499 -4 104.10 
5.80 .7794 -3 83.537 10.80 .1408 -4 104.33 
5.90 .7021 -3 84.257 10.90 .1324 -4 104.57 

■ 

*.9352  x   10"1  -   .9352  -1 

«il 



TABLE 18.   (Continued) 

it 

63 

P/P« P/P4 

11.00 .1245 -4 104.80 16.30 .8565 -6 113.00 
11.10 .1171 -4 105.02 16.40 .8213 -6 113.11 
11.20 .1103 -4 105.24 16.50 .7876 -6 113.21 
11.30 .1039 -4 105.46 16.60 .7556 -6 113.31 
11.40 .9788 -5 105.67 16.70 .7250 -6 113.41 
11.50 .0228 -5 105.88 16.80 .6959 -6 113.51 
11.60 .8704 -5 106.09 16.90 .6680 -6 113.61 
11.70 .8215 -5 106.29 17.00 .6415 -6 113.71 
11.80 .7755 -5 106.49 17.10 .6161 -6 113.81 
11.90 .7325 -5 106.69 17.20 .5918 -6 113.90 
12.00 .6922 -5 106.88 17.30 .5687 -6 114.00 
12.10 .6544 -5 107.07 17.40 .5465 -6 114.09 
12.20 .6189 -5 107.26 17.50 .5254 -6 114.18 
12.30 .5857 -5 107.44 17.60 .5052 -6 114.27 
12.40 .5544 -5 107.62 17.70 .4859 -6 114.36 
12.50 .5250 -5 107.80 17.80 .4674 -6 114.45 
12.60 .4973 -5 107.98 17.90 .4496 -6 114.54 
12.70 .4714 -5 108.15 1ft. 00 .4328 -6 114.63 
12.80 .4469 -5 108.32 18.10 .4165 -6 114.72 
12.90 .4239 -5 108.49 18.20 .4010 -6 114.80 
13.00 .4023 -5 108.65 18.30 .3861 -6 114.89 
13.10 .3818 -5 108.82 18.40 .3718 -6 114.97 
13.20 .3626 -5 108.97 18.50 .3582 -6 115.05 
13.30 .3444 -5 109.13 18.60 .3452 -6 115.13 
13.40 .3273 -5 109.29 18.70 .3326 -6 115.21 
13.50 .3111 -5 109.44 18.80 .3206 -6 115.29 
13.60 .2958 -5 109.59 18.90 .3090 -6 115.38 
13.70 .2814 -5 109.75 19.00 .2980 -6 115.45 
13.80 .2678 -5 109.89 19.10 .2874 -6 114.53 
13.90 .2550 -5 110.04 19.20 .2772 -6 115.61 
14.00 .2428 -5 110.18 19.30 .2674 -6 115.68 
14.10 .2313 -5 110.32 19.40 .2581 -6 115.76 
14.20 .2204 -5 110.46 19.50 .2491 -6 115.83 
14.30 .2100 -5 110.60 19.60 .2404 -6 115.91 
14.40 .2003 -5 110.74 19.70 .2321 -6 115.98 
14.50 .1910 -5 110.87 19.80 .2241 -6 116.05 
14.60 .1823 -5 111.00 19.90 .2165 -6 116.13 
14.70 .1739 -5 111.13 20.00 .2091 -6 116.20 
14.80 .1660 -5 111.26 
14.90 .1586 -5 111.38 
15.00 .1515 -5 111.51 
15.10 .1447 -5 111.63 
15.20 .1383 -5 111.76 
15.30 .1323 -5 111.88 
15.40 .1265 -5 112.00 
15.50 .1210 -5 112.11 
15.60 .1158 -5 112.23 
15.70 .1108 -5 112.34 
15.80 .1061 -5 112.45 
15.90 .1016 -5 112.57 
16.00 .9731 -6 112.68 
16.10 .9323 -6 112.79 
16.20 .8936 -6 112.89 
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0°  K 

180° 

For a  - 0°, sin 6 - sin 0. 

The value for C on the desired meridian, *, may be determined 
max 

either experimentally or theoretically.  The NASA si »sä zero and small angle 

of attack cone tables can be used for the starting values on a cone fitted to 

the nose vertex if experimental data are lacking; the procedure is as follows: 

The general expression for pressure coefficient Is: 

qo \Po   I 
and 

p„    P  p« 

where p, refers to conditions at zero angle of attack and the quantity p,/p 

may be obtained directly from the zero angle of attack cone tables" .  The ratio 

of p/pt which is the ratio of static pressure at angle of attack to static 

pressure at zero angle of attack can be calculated using the theory of Stone'3 

wherein the velocity, pressure, and density are expanded in the following series 

and higher order terms in a  are neglected: 

** -< aUg   cos i|i 

P ■ Pi - «Ps cos t 

- ao» cos i|r 

where the flow quantities M, , Pi , and oi refer to conditions at .zero angle of 

attack and Ug ,  Ps >  and oa are the flow quantities related to the effect of angle 

of attack.  Reference 23 provides solutions for the above equations yielding. 

The necessary tables required in the calculatlonal procedures of this sub- 
section have been reproduced from the references and included in Appendix 1. 

I 

••■*» 
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among others,  the following expression: 

P/Pi   - 

-IÄ 
(y+D - (y-D M 

(y+D - (r-D M,' 
a  (S,/»)  cos  I|I 

References 21 and 22 have provided tabulated values of Mi ,   Ifc , 
and  Sj/R-for use  in determining p/p,   and subsequently,   C  .     Since conditions at 
thi nose vertex were used to calculate the pressure coefficient,   this value of 
C    becomes C      from whence C ,   Equation   (7),  may be determined.     Starting 

"H max 

values of C must be calculated for each value of * at the desired angle of 
'max 

attack. Once this is done, the Generalized Newtonian theory, Equation (6), is 

used to calculate the values of C along each meridian up to the point where the 

shock expansion method is used to extend the impact theory; for the cylindrical 

afterbody. Equation (5a) or (5b) is used for the pressure coefficient distribut- 

ion. 

The local Mach number at the nose vertex (where M m VL.)  may be 

determined from the relation'*: 

M" - 2 M*a 

(r+D - (r-D M*» 

On the  leeward side of the body,   certain portions of the surface 
will   lie  in the "aerodynamic  shadow" and the Newtonian theory cannot predict  the 
pressures  in this region.     This shadow area on  the body,   shown pictorially here. 

< V 

^fZ     ^m^t \ ^    ^mm :          \    ^^t^mz m,           \       ^5% x          5 
\       / 

^^    / 
:                    ^ 

Shadow Area 

can be determined quite easily along any leeward meridian by setting sin 6-0 

and solving for 0.  For any meridian in general, the 0 at which the shadowed 

area starts is: 

0 - tan"1 (tan a  cos *) 
for « - 0°     0 - a 
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Thus the shadow area begins along the • - 0° meridian at the point where the 

body surface angle is equal to ttie angle of attack. 

On all meridians, the matching point (where the shock-expansion 

method is used to extend the impact theory) is obtained directly from plots 

presented in prior sections of this report, e.g.. Fig. 6, page 16.  When the 

matching point lies within the shadowed area, the shock-expansion method should 

be started at the x/' value where sin 6-0. 

A numerical example is presented in Appendix 1 wherein the pressure 

coefficient distribution has been calculated for a tangent ogive-cylindrical 

afterbody combination at ll0 - 2.0 and */d - 3 at an angle of attack of 5 degrees. 

Tables are included which provide the necessary parameters for determining the 

pressure and local Mach number distribution.  For the numerical example, start- 

ing values of C  were determined for seven meridians beginning at ♦ - 0* and 
pN 

proceeding In 30 degree Increments up to  • - 180°. The pressure distribution 

along the t - 180° meridian is the only one for which the C calculation is shown 

since the procedure is similar for each meridian. The calculrtlon of the cylin- 

drical afterbody pressure distribution using Equation (5b) has also been in- 

cluded for the * - 180° meridian. 

The pressure distributions calculated by the present method for the 

numerical example of Appendix 1 are presented in Figure 23 where experimental 

MFTMOO 

— ■ MCMNT «rnwo 
A      JXFtMMWT 

meH-t.OO 1/4'»       ■(•.« 

N. T "T ■ 

~~. L^ *„     ,|    1 4im4J_ - --»--' 
M t m - «. •• • • » M 

H 
^ H* < L * 

"^ 1 *- r-" — 
• M 

„ ^_ ♦•-r 

• M •« t* *■* •« 

r 

'.^- 
■     ■     i   r T - 
 1 .«"J— 

»1  

•        — 
5^f= = :^ 

S % 
S ( >«■ 

». SM 
*- -w - — —> 

^s    - :..:•- 
J 
 ^^^^__!BW_(_ 

• M M ••„,•» i* *» 

Fig. 23  PRESSURE COEFFICIENT DISTRIBUTION FOR A TANGENT 
OGIVE-CYLINDRICAL AFTERBODY COMBINATION AT o - 5°, 

I|I - 0°, 30°, 60°, 90J, 120°, 150°, and 180° 

i 
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values'8 have been included for comparison purposes with the subsequent indi- 

cation of good agreement. 

2. Bodies of Revolution at Large Angles of Attack 

The calculation of pressure distributions for angles of attack 

greater than about 9 degrees requires somewhat more time since the starting 

values of C  must be determined from the HIT*8'*7'*8 cone tables (or comparable 
pN 

information) unless experimental data are available. Once the starting values 

have been obtained, the procedure is similar to that used for the small angles 

of attack. 

Since the MIT cone tables are being used to obtain starting values 

at the nose vertex, the symbols and nomenclature adopted by this widely used 

reference will not be altered to conform to the nomenclature of this report. 

Any attempt to redefine or re-reference the parameters would inevitably tend to 

compound the existing complexity of the equations. The symbols and nomenclature 

from the MIT cone tables which are used in the present study are defined on page 

4 of this report.  In addition, the parameters required for calculating C  have 
PN 

been picked from the MIT cone tables and are tabulated in Appendix 2 for ready 

use.  If any intermediate values of the parameters are required, they can be 

obtained much more readily when nomenclature consistent with the reference source 

is used. 

The theory of Stone*3is used once again to determine the flow 

parameters which have been expanded In the following series; for large angles 

of attack, the higher order terms in a cannot be neglected, i.e.. 

P/p"- I + a Al   cos ♦ + a" (At + As cos 2t) 

o/F - 1 + o B, cos t + a* (B» -f Ba cos 2*) 

where p/p and o/F are the pressure and density on the cone surface at angle of 

attack divided by the corresponding values at zero angle of attack, A, and B, 

specify the first order effects of a, and Aa, A3, B,, and B9 represent the second 

order effects of a.  Proceeding further: 

A, - -VP 

T7» A, -p^-J-H  +^_cote8 s    2p 

A3- ps/p + -fc- 2- cot e 
2? 

i 
f 
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APPENDIX I 

CALOUUTKM  OF PNEMURt COEPFICieNT OlSTneUTION POR 
AHMMfNT OMVC-CVUNMICAL APTERNOY  COMBINATION 
AT AN ANOLE OP ATTAOK OP S OESREES 

A. CONDITIONS 

mm mmm HMN NUMMR —   n,. t 

MOM PMCkn« RMW    1/4*» 

MOM «Ml-VOmx  MMLt —    •N «ItJtt* 

HwmtoMo amiuMiTv MUUMKHR   —   K«.«7 

MHO OP tpcoino mm —    X*i.4ot 

a PRE88UNE  COEFFICIENT AND MACH NUMBER  STARTING VALUES, X// »0 

(^■(^/yip/p#-i)*ipa^y^i;io;/i;}-n n. Ai-i 

' Uy+,)-(y-oiirJ    • 

M*« M,* «Mg OM^f, a IN MMANt B).  M-S 

^O-lr-OM^J 

l/t 

CO.   AI-4 

f|/rs ■IMM    WWM umm** I. MAU >. nm.   80 

0 M,     . L4MI " "        '   TMU •,     "     Jl_. 

Mt    •-.TIM '        •    1MLCI0, _SL 

St/ft*.0«SI " ■ "    TMLC II.     "     _», 

^••^•75? 
NUMCRIOM.   «umOM POP gMMTWM   AI-I.AI-t, AI-$,AN0 AI-4 AM SMOVN IN 
OOLUHM •.•,4,M»P nnPIOTIVILr   OT   1AM.C C. MM  4S_ 
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APPENDIX I 

0. MESSURE OOEPPICIENT AND LOCAL MACH NUMMER OMTNIBUTIONS 

ALON0   f-ISO* MERIDIAN   (Kl PMUM I») 

CONDITIONS AT NOSE VERTEX 
M^        *I.4M - OOUMN   •,    niLC I 

•     10.      • MyH :tno 
• .4004 — • . 

^ku ' MM«        - I«. 7 

iGf %Mjun (OOUNM s.naLC 4) mow nc MM vmnx ur TO THE MMTONM« 

KXMT.ix/i^.ARC oamiNco mm to«, tmc (MTOHMM KNNT •OLUTKM IS 

PMomtiB ON PMI I«). 
tCf VM.Ui« (OOUMM 4,MLE 4) mOM (X/ilm TO 1//M ANf CALOUUTCO  Htm« 

TMC MOOCOUKK OUTUNCO ON MCCt « ANO  » .PON   TNI« MUmcULM CUUM.K. 
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ILALL LOOAL MAON NU—PI MMUUCS (OOUNM «.IMLC 4)   ANC OOTAINCO  mOM 1MU 
■t APfENOIXS.UHN« TNt APMOFNIATK  WtUI Of   **t   (OOLUMNa.TMLC 41 
OALOULATIO   FNOM EO. «a 

TMLE 4. PRESSURE   OOEFFIOIENT OtSTRISUTION ANO MACH NUMBER 
ALONO  t«l80*  MERIDIAN,«'S* 

1 « 3 4 9 • 7 « • 

K/X »N'S 6N 
CO.« 

SEM 
CO. 9 

e ae V P,Pt 
M 

wiei« 
0 .l«44« .4004 — - - — .«740 I.4N 
.1 .IMM .140« - - - - .«««4 1.99« 

.11740 .t«M - - - - .«MS l«0« 
«•«7S .«««• - - - - .«144 1.««« 
.07*04 .I«00 - - - - .l»79 1.71« 

««a« .14«« — - — — .l«9l 1.797 

J04«SI IIS« — - — - .1701 IJI9 

•7in .01974 .OWI .0«CI 9.9« 4 — «t.4«« .18«« IJ8« 

— — OS«« S.7iS i.««« t4.t«l .149« l.««9 

- — .000« 1.««« I.««0 C«.I8I .ISM l.««C 

i.O - - -.0990 0 l.«9« ««.010 .11«« «.0«0 

6N 

SEM 
e 

M 
V 

•SCNCRAUZCO  NCWTONIAN 
• «HOCK CXMUMKM MKTHOO 
• «OOV «UNFAOC  AN«LC 
• MATOHIN« MINT Of «CNOULlZIO NCWTONIAN «NO «NOOK CXMMMN NCTHOO 

• M CORNCOPONOM«   10    HP FROM MANOTt- MCVCN  1A«tC« 

• MANOTL-NCTCR   fLOW OCPLCOTION   «NCLC   OONRCSPONOW«   TO   M 

^r^^^^ 



I 
I 

47 

APPENDIX I 

E. CYLINDRICAL AFTERBODY PRESSURE COEFFICIENT  DISTRIBUTION 
ALONG ^•IBO* MERIDIAN 

UtINt EO.  Bb 
iX/A 

CP 
■ C pita.» ii • M 

MkLUCt    OP   Cp   ON   THE   CVUMOmOAL   ArtERtOOt    ANE 
CALCUmTED    M    «MOWN   IN   TMLE   S. 

'PI*/ft) l|. • -.OS60 , FROM   COLUMN 4,TABLE 

TABLE 5.    PRESSURE COEFFICIENT DISTRIBUTION   ON  CYLINDRICAL 
AFTERBODY, a-S* 

1 1 S 4 

x/i *n*A •    K (^••JOMO(S> 

1.0 0 LOOM -MM 
l.t .i .M07 -OMI 

It j .MM -x>tm 
1.« .1 .«»I» -.otu 
1.4 .4 .•4M -.OtM 

1.0 » .47t4 -AM 
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